PALLADIUM(II) COMPLEXES OF DIPHENYLPHOSPHINEACETIC ACID*

Jaroslava RŮžıčKovÁ** and Jana PodlahovÁ
Department of Inorganic Chemistry,
Charles University, 12840 Prague 2

Received September 19th, 1977

Abstract

Palladium(II) forms the following types of complexes with diphenylphosphineacetic acid (HA): trans-square planar $\mathrm{PdX}_{2}(\mathrm{HA})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{S}$-bonded SCN$)$ and trans-planar, halide (thiocyanate) bridged dimers $\mathrm{Pd}_{2} \mathrm{X}_{4}(\mathrm{HA})_{2}$, both containing HA as a monodentate P-donor. In neutral solutions, the extremely stable square planar complex $\operatorname{PdA}_{2}\left(\beta_{2}>10^{39}\right)$ is formed with bidentate A^{-}ligands. The results are based on preparative work together with electronic and IR spectral, condctuance, molecular weight and magnetic data.

As a typical soft cation, palladium(II) forms a number of complexes with monodentate tertiary phosphines. The complexes belong to the following two basic structural types ${ }^{1-3}$: monomeric square planar $\mathrm{Pd}_{2}\left(\mathrm{PR}_{3}\right)_{2}$ (X represents a monodentate ligand, frequently halide) which are mostly trans. The second type includes trans--square planar $\mathrm{Pd}_{2} \mathrm{X}_{4}\left(\mathrm{PR}_{3}\right)_{2}$ dimers with X -bridges and trans arrangement of the terminal phosphines. These complexes are interesting theoretically, especially the contribution of σ and π palladium-phosphorus bonding, and also find practical use in homogeneous catalysis ${ }^{2}$.

In a previous paper of this series ${ }^{4}$ we studied the coordinating properties of diphenylphosphineacetic acid (abbreviated as HA), as the simplest representative of carboxyphosphines of the $\mathrm{Ph}_{3-\mathrm{n}} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{\mathrm{n}}$, type, with nickel(II) cation which has comparable affinity for both donor atoms of the ligand. This work was carried out to study complexes of HA with palladium(II) which, as a typical soft metal ion, has much lower affinity for the carboxyl oxygen.

EXPERIMENTAL

Chemicals

Diphenylphosphineacetic acid was prepared according to the literature ${ }^{4}$. The palladium(II) chloride solution (Safina, Vestec) was analyzed and found to be $2 \cdot 29 \mathrm{~m}-\mathrm{H}_{2} \mathrm{PdCl}_{4}$. The chloro-

[^0]complexes $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ were prepared by neutralization of this solution followed by crystallization from water. The $\mathrm{Na}_{2} \mathrm{PdBr}_{4}$ and $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{SCN})_{4}$ complexes were prepared by conversion of the chloro complexes with NaBr and KSCN , respectively, in absolute ethanol followed by filtration of the alkali chloride and crystallization. Other chemicals were p.a. products (Lachema and Merck). Solvents were purified using standard methods. Spectrograde tetrahydrofuran and methanol were fractionated in a stream of nitrogen and the fractions not absorbing at $\lambda \geqq 230 \mathrm{~nm}$ were used.

Apparatus

The instruments and measuring methods used are described in a previous paper ${ }^{4}$. Molecular weights were determined by vapour-pressure osmometry in tetrahydrofuran using a Perkin-El-mer-Hitachi 115 instrument.

Analytical Methods

After a wet mineralization of the samples with a nitric-perchloric acid mixture, palladium was determined either by EDTA-titration ${ }^{5}$ or photometrically ${ }^{6}$ and phosphorus photometrically ${ }^{7}$. Halogens were determined after combustion of the samples according to the method of Schöniger and the thiocyanate content was found through nitrogen determination by the Dumas method.

Preparation of the Complexes $\mathrm{PdX}_{2}(\mathrm{HA})_{2}(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SCN})$
Method 1: 4 mmol of $\mathrm{M}_{2} \mathrm{PdX}_{4}$ dissolved in 2 ml water (for Br and I prepared in situ from $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and an excess of NaX ; the suspension of PdI_{2} in NaI formed required stirring for several hours in the subsequent reaction) were mixed with a solution of 8 mmol of HA in 20 ml of acetic acid. The products separated overnight and were washed with water, recrystallized from acetic acid and dried at room temperature. Yields varied from 55 to 85%.

Method 2: a solution of 4 mmol of $\mathrm{PdCl}_{2}(\mathrm{HA})_{2}$ in 20 ml of ethanol was prepared by mixing stoichiometric amounts of $\mathrm{H}_{2} \mathrm{PdCl}_{4}$ and HA. To this solution were added 16 mmol of NaX $(\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) dissolved in 10 ml of ethanol. The products which crystallized out after several hours were isolated as previously with yields of 60 to 75%.

The two methods yielded identical products. Method 2 is far more convenient for the synthesis of the iodo complex.

$$
\mathrm{Pd}_{2} \mathrm{X}_{4}(\mathrm{HA})_{2}
$$

5 mmol of pulverized $\mathrm{PdX}_{2}(\mathrm{HA})_{2}$ and 5 mmol of $\mathrm{M}_{2} \mathrm{PdX}$ (for I a suspension of PdI_{2} in 2 NaI) were dissolved under reflux in 100 ml of ethanol. After evaporation to dryness, the crude products were washed with water, crystallized from ethanol and dried at room temperature. Yields were $30-65 \%$.

$$
\mathrm{PdA}_{2}
$$

In a nitrogen atmosphere a solution of 5 mmol of NaA in 20 ml of water was acidified to $\mathrm{pH}<7$ by addition of a small amount of HA (to prevent palladium(II) from being reduced to the metal). The white precipitate formed on the addition of a solution of 2.5 mmol of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in 20 ml of water was separated, washed with water and crystallized from 50% ethanol. After drying in the air the yield was 68%.

RESULTS

The palladium(II) complexes with HA are light yellow to deep reddish-brown crystalline diamagnetic substances, stable in the air, insoluble in water and soluble in polar organic solvents to give non-conducting solutions. The results of analysis and other properties are given in Table I. Diagnostically significant bands of the IR spectra are given in Table II and the electronic spectra are summarized and assigned in Table III.

The thermodynamic stability of Pd_{2} was qualitatively estimated from spectrophotometric measurements in the system

$$
\mathrm{PdDTPA}^{3-}+2 \mathrm{~A}^{-} \rightleftharpoons \mathrm{PdA}_{2}+\mathrm{DTPA}^{5-}
$$

Table I
Analytical Data and Properties of the Complexes Prepared

Compound	Colour	Calculated/Found				M.p. ${ }^{a},{ }^{\circ} \mathrm{C}$
		M.w.	\% Pd	\% P	\% X (N)	
$\mathrm{PdCl}_{2}(\mathrm{HA})_{2}$	yellow	665•8	15.98	$9 \cdot 30$	10.65	201-203
		652	$15 \cdot 89$	$9 \cdot 03$	10.98	
$\mathrm{PdBr}_{2}(\mathrm{HA})_{2}$	orange	$754 \cdot 8$	$14 \cdot 10$	$8 \cdot 20$	$21 \cdot 18$	219-221
		771	$14 \cdot 37$	$8 \cdot 20$	21.08	
$\mathrm{PdI}_{2}(\mathrm{HA})_{2}$	red	$848 \cdot 7$	$12 \cdot 54$	7.30	29.91	210-213
		829	$12 \cdot 51$	$7 \cdot 45$	29.15	
$\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{HA})_{2}$	yellow	711.0	14.96	8.71	3.94	179-181
		708	15.01	$8 \cdot 80$	4.01	
$\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{HA})_{2}$	red-brown	$843 \cdot 1$	25.24	$7 \cdot 35$	16.82	203-206
		870	$25 \cdot 15$	$7 \cdot 18$	16.66	
$\mathrm{Pd}_{2} \mathrm{Br}_{4}(\mathrm{HA})_{2}$	dark red	$1022 \cdot 4$	20.84	6.07	31.31	236-238
		1075	21.31	6.03	$31 \cdot 68$	
$\mathrm{Pd}_{2} \mathrm{I}_{4}(\mathrm{HA})_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}^{\text {b }}$	red-brown	$1256 \cdot 5$	16.94	$4 \cdot 93$	$40 \cdot 40$	231-232
		1201	17.00	$4 \cdot 84$	$40 \cdot 19$	
$\mathrm{Pd}_{2}(\mathrm{SCN})_{4}(\mathrm{HA})_{2}^{c}$.	orange-red	$1027 \cdot 3$	$20 \cdot 72$	$6 \cdot 03$	$5 \cdot 46$	194-196
$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$		930	20.85	6.71	$5 \cdot 19$	
PdA_{2}	light yellow	$592 \cdot 4$	17.95	10.45		218-220
		614	18.40	10.73		

[^1]$\left(\mathrm{H}_{5} \mathrm{DTPA}=\right.$ diethylenetriaminepentaacetic acid). After equilibration, the absorbance of solutions containing various amounts of H_{5} DTPA, HA and $\mathrm{Pd}\left(\mathrm{ClO}_{4}\right)_{2}$ (ref. ${ }^{8,9}$) in an acetate buffer of pH 5.5 was measured in the near UV region where the molar absorption coefficients of PdDTPA ${ }^{3-}$ and PdA_{2} differ considerably $\left(\varepsilon_{325}=1450\right.$ (ref. ${ }^{10}$) and 3560 , respectively). Within experimental error (1%), the formation of PdA_{2}, was found to be complete at all reagent ratios including $c_{\text {DTPA }}=$ $=5 c_{\mathrm{A}}=10 c_{\mathrm{Pd}}=0.01 \mathrm{M}$. As $\beta_{\text {PdDTPA }}=10^{29.7}$ (ref. ${ }^{10}$) it follows that the stability constant of PdA_{2} must be higher than 10^{39}.

Other methods tested for the determination of the stability constant have been found unsuitable: the $\mathrm{Pd}^{2+}-\mathrm{A}^{-}-\mathrm{SCN}^{-}$system yields mixed complexes, the polarographic reduction of PdA_{2} is irreversible and a palladium metal electrode is poisoned in the presence of phosphines (see also ${ }^{9}$).

Table II
Selected Bands of the IR Spectra of the Complexes in Nujol Mulls

Compound	$v_{\mathrm{as}}(\mathrm{COO})$	$v_{s}(\mathrm{COO})$	(C-P)	v ($\mathrm{Pd}-\mathrm{X})$			$v(\mathrm{Pd}-\mathrm{P})$
				a	b	c	
$\mathrm{PdCl}_{2}(\mathrm{HA})_{2}$	1690 vs	1290 s	$\begin{aligned} & 517 \mathrm{~m} \\ & 490 \mathrm{~m} \end{aligned}$	360 m	-	-	220 w
$\mathrm{PdBr}_{2}(\mathrm{HA})_{2}$	1702 vs	1295 s	$\begin{aligned} & 508 \mathrm{~m} \\ & 478 \mathrm{~m} \end{aligned}$	276 m	-	-.	226 w
$\mathrm{PdI}_{2}(\mathrm{HA})_{2}$	1705 vs	1305 s	$\begin{aligned} & 505 \mathrm{~s} \\ & 477 \mathrm{~m} \end{aligned}$	209 m	--	-	228 w
$\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{HA})_{2}$	1739 vs	1227 m	$\begin{aligned} & 507 \mathrm{~s} \\ & 480 \mathrm{~s} \end{aligned}$	$2140 \mathrm{vs}^{\text {d }}$	$665 \mathrm{w}^{e}$	$318 \mathrm{~m}^{f}$	219 w
$\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{HA})_{2}$	1730 s	1300 m	$\begin{aligned} & 515 \mathrm{w} \\ & 490 \mathrm{w} \end{aligned}$	357 m	261 m	300 w	215 vw
$\mathrm{Pd}_{2} \mathrm{Br}_{4}(\mathrm{HA})_{2}$	1710 vs	1300 s	$\begin{aligned} & 428 \mathrm{~s} \\ & 416 \mathrm{sh} \end{aligned}$	280 s	229 w	213 vs ${ }^{\text {g }}$	$213 \mathrm{vs}^{g}$
$\mathrm{Pd}_{2} \mathrm{I}_{4}(\mathrm{HA})_{2} . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1710 s	1288 s	415 m	$207 \mathrm{~s}^{g}$	i	${ }^{i}$	$207 \mathrm{~s}^{g}$
$\begin{aligned} & \mathrm{Pd}_{2}(\mathrm{SCN})_{4}(\mathrm{HA})_{2} . \\ & .2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}^{\mathrm{h}} \end{aligned}$	1720 vs	1297 s	$\begin{aligned} & 462 \mathrm{~m} \\ & 435 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2138 \mathrm{~s}^{d} \\ & 2173 \mathrm{~s} \end{aligned}$	j	$\begin{aligned} & 299 \mathrm{~m}^{f} \\ & 260 \mathrm{w}^{k} \end{aligned}$	210 w
PdA_{2}	1650 vs	1295 vs	$\begin{aligned} & 492 \mathrm{~s} \\ & 447 \mathrm{w} \end{aligned}$	-	-	-	222 w

[^2]
DISCUSSION

The molecular structure of palladium(II) diphenylphosphineacetate complexes follows clearly from the experimental material. The $\mathrm{PdX}_{2}(\mathrm{HA})_{2}$ and $\mathrm{Pd}_{2} \mathrm{X}_{4}(\mathrm{HA})_{2}$ complexes are formed under conditions where the HA molecule is undissociated. As follows from the IR spectra, $\left(v_{\mathrm{as}}(\mathrm{COOH})\right.$ around $\left.1700 \mathrm{~cm}^{-1}\right)$ the undissociated HA molecule coordinates through the phosphorus atom alone, as a typical monodentate tertiary phosphine: the spectra contain a new band attributable to $v(\mathrm{Pd}-\mathrm{P})$ at $220 \mathrm{~cm}^{-1}$ and the $v(\mathrm{P}-\mathrm{C})$ region exhibits splitting. The coordination sphere of palladium is completed by halide or thiocyanate anions in the usual square-planar arrangement ${ }^{11-15}$.

The coordination of halides is also reflected in the IR spectra where palladium-halogen stretching vibrations were identified: in accordance with local $D_{2 h}$ symmetry ${ }^{16}$, the spectra of the monomeric complexes exhibit only one $v(\mathrm{Pd}-\mathrm{X})$ band, similarly to the nickel(II) analogues ${ }^{4}$. The spectrum of the dimeric chloro complex exhibits all the three IR active $P d-X$ stretching modes belonging to local $C_{2 h}$ symmetry ${ }^{12,16,17}$; the spectra of dimeric bromo and iodo complexes are less clear as the $v(\operatorname{Pd}-\mathrm{X})$

Table III
The Electronic Spectra of the Complexes
Band parameters obtained by Gaussian deconvolution ${ }^{8}$ are given in $10^{3} \mathrm{~cm}^{-1}\left(\varepsilon_{\mathrm{M}}\right)$

$$
\text { Compound } \quad{ }^{1} A_{1 \mathrm{~g}} \rightarrow{ }^{3} E_{\mathrm{g}} \quad{ }^{1} A_{1 \mathrm{~g}} \rightarrow{ }^{1} A_{2 \mathrm{~g}}
$$

$\mathrm{PdCl}_{2}(\mathrm{HA})_{2}$	a		25.75 (657)
	b	24.4	25.9
$\mathrm{PdBr}_{2}(\mathrm{HA})_{2}$	a	$21 \cdot 64$ (24)	23.68 (216)
	${ }^{\text {b }}$	20.4	23.9
$\mathrm{PdI}_{2}(\mathrm{HA})_{2}$	a	$17 \cdot 79$ (41)	21.23 (252)
	b		22.0
$\operatorname{Pd}(\mathrm{SCN})_{2}(\mathrm{HA})_{2}$	a		$22 \cdot 87$ (432)
	b	$21 \cdot 9$	$22 \cdot 7$
$\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mathrm{HA})_{2}$	a		$24 \cdot 84$ (413)
	b	$19 \cdot 4$	$25 \cdot 4$
$\mathrm{Pd}_{2} \mathrm{Br}_{4}(\mathrm{HA})_{2}$	a		$22 \cdot 23$ (258)
	b	17.9	$22 \cdot 7$
$\mathrm{Pd}_{2} \mathrm{I}_{4}(\mathrm{HA})_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	a		16.94 (356)
	b	$15 \cdot 1$	$16 \cdot 7$
$\mathrm{Pd}_{2}(\mathrm{SCN})_{4}(\mathrm{HA})_{2} .2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	a	$16 \cdot 64$ (51)	$22 \cdot 10$ (428)
	b		$22 \cdot 2$
PdA_{2}	a		29.67 (1 620)
	b		$30 \cdot 3$

bands coincide with the ligand maxima or are outside the measuring range. Nevertheless, the structural type of both monomeric and dimeric halogen complexes is independent of the type of halogen, as the powder patterns obtained are similar; the $\mathrm{PdBr}_{2}(\mathrm{HA})_{2}$ and $\mathrm{PdI}_{2}(\mathrm{HA})_{2}$ complexes are isostructural. Analogously, the $\mathrm{d}-\mathrm{d}$ transition energies in the electronic spectra correspond to the position of X in the spectrochemical series, indicating the absence of structural anomalies.

The spectral data are also useful in determining the thiocyanate-coordination mode. In the monomeric $\operatorname{Pd}(\mathrm{SCN})_{2}(\mathrm{HA})_{2}$ complex, both thiocyanates are S -bonded, as the $v(\mathrm{C} \equiv \mathrm{N})$ and $v(\mathrm{C}-\mathrm{S})$ bands at 2140 and $665 \mathrm{~cm}^{-1}$, respectively, correspond ${ }^{18}$ to $\mathrm{Pd}-\mathrm{S}-\mathrm{C} \equiv \mathrm{N}$ coordination; in addition, only one ($\mathrm{Pd}-\mathrm{S}$) band ${ }^{19}$ at $318 \mathrm{~cm}^{-1}$ is present in the palladium-ligand stretching vibration region and thus the thiocyanates are trans-bonded; the $d-d$ transition energies are consistent with the spec-

Table III
(Continued)

$$
{ }^{1} A_{1 \mathrm{~g}} \rightarrow{ }^{1} E_{\mathrm{g}} \quad \mathrm{p} \sigma(\mathrm{P}) \rightarrow \mathrm{Pd} \quad \mathrm{p} \pi(\mathrm{X}) \rightarrow \mathrm{Pd} \quad \mathrm{p} \sigma(\mathrm{X}) \rightarrow \mathrm{Pd}
$$

	$\begin{aligned} & 30 \cdot 03(20900) \\ & 29 \cdot 55 \end{aligned}$	$\begin{aligned} & 34 \cdot 40 \quad(4590) \\ & 34 \cdot 7 \end{aligned}$	
	27.96 (11500)	33.68 (10 500)	
	28.0	32.4	
23.94 (3 320)	27.41 (3 380)	31.53 (13900)	
$24 \cdot 1$	$27 \cdot 3$		
	28.03 (6030)	32.80 (13 100)	
		$32 \cdot 6$	
	26.71 (2 230)	36.00 (15 200)	>41
		$35 \cdot 8$	
	$25 \cdot 19$ (3 170)	$32 \cdot 15$ (10 800)	37.52 (38 600)
	$26 \cdot 3$	29.4	37.0
$20 \cdot 71$ (4540)	25.44 (11 000)	29.60 (29 800)	$34 \cdot 41$ (20 800)
$20 \cdot 8$	$24 \cdot 4$	$30 \cdot 3$	
	$26 \cdot 29$ (2 630)	$31 \cdot 19$ (27 600)	36.45 (7960)
	$26 \cdot 3$	$31 \cdot 3$	
	31.82 (3030)		
	$32 \cdot 0$		

${ }^{a}$ Tetrahydrofuran solution (PdA_{2} in methanol); ${ }^{b}$ diffuse reflectance.
trochemical series only for S-bonded thiocyanates. From the electronic point of view, the presence of $\mathrm{Pd}-\mathrm{SCN}$ bonding in phosphine complexes is somewhat anomalous considering the usual σ and π distribution character in coordination bonds ${ }^{\mathbf{1 8 , 2 0}}$.

The diphenylphosphineacetate complex differs from the analogous triphenylphosphine complex ${ }^{21}$, which has been shown to involve $S C N$ coordination through nitrogen. However, a very slight modification of the phosphine structure has been shown in a number of cases to cause a change in the type of thiocyanate coordination. The reasons for this behaviour have not been unambiguously elucidated.

In the dimeric $\mathrm{Pd}_{2}(\mathrm{SCN})_{4}\left(\mathrm{HA}_{2}\right)$ complex, two types of thiocyanate bonding are evident from the splitting of the $v(\mathrm{C} \equiv \mathrm{N})$ band into two maxima of equal intensity. Their positions indicate the presence of two terminal and two bridging ($2173 \mathrm{~cm}^{-1}$) thiocyanate groups in the complex molecule ${ }^{18,22}$.

The bridging groups bound to one central nitrogen atom have an appropriate effect on the energy of the d-d transitions, which exhibit a marked shift to higher wavenumbers in agreement with the position of N-coordinated thiocyanate in the spectrochemical series. The proposed arrangement involves, of course, three possible isomers:

I

II

III
As the attempted isolation of the isomers failed, one of the forms seems to be favoured energetically in the solid state and in solution.

Similarly to the $\mathrm{Ni}(\mathrm{II})$ complexes ${ }^{4}$, a second, completely different ligand bonding appears when the carboxyl is dissociated. In neutral aqueous solutions, an extremely stable, square planar PdA_{2} complex containing two chelating A^{-}ions is formed. The strongly covalent carboxyl ${ }^{23}$ bond is reflected in the position of the $v_{\text {as }}(\mathrm{COO})$ band at $1650 \mathrm{~cm}^{-1}$ as well as in the marked blue shift of the spin-allowed bands. The position of the bidentate A^{-}ion in the spectrochemical series is consistent with the parameters obtained ${ }^{4}$ from the spectrum of the nickel(II) complex. The coordination sphere of the nickel(II) complex (with the same composition) is, however, closer to a tetrahedral arrangement with a triplet ground state, which may be connected with the smaller radius of the Ni^{2+} ion. As a consequence of the high affinity of palladium for phosphorus, the thermodynamic stabilities of the NiA_{2} and PdA_{2} complexes are quite different; the diphenylphosphineacetate anion is one of the strongest chelating agents for palladium(II) known.

Note added in proof: Recently, Shaw and coworkers ${ }^{24}$ prepared the complex PdA_{2} using a different synthetic path.

REFERENCES

1. Booth G.: Advan. Inorg. Chem. Radiochem. 6, 1 (1964).
2. Hartley F. R.: The Chemistry of Platinum and Palladium, p. 128. Applied Science Publishers, London 1973.
3. Pidcock A.: Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, p. 144. C. M. McAuliffe, Ed., Macmillan, London 1973.
4. Jarolím T., Podlahová J.: J. Inorg. Nucl. Chem. 38, 125 (1976).
5. McNevin W. M., Kriege O. H.: Anal. Chem. 27, 535 (1955).
6. Malát M.: Absorpční anorganická fotometrie, p. 753. Academia, Prague 1973.
7. Talvitie N. A., Perez E., Illustre D. P.: Anal. Chem. 34, 866 (1962).
8. Cavell R. G., Byers W., Day E. D.: Inorg. Chem. 10, 2710 (1971).
9. Chang J. C., Bjerrum J.: Acta Chem. Scand. 26, 815 (1972).
10. Anderegg G., Malik S. C.: Helv. Chim. Acta 59, 1498 (1976).
11. Stephenson T. A., Morehouse S. M., Powell A. R., Heffer J. P., Wilkinson G.: J. Chem. Soc. 1965, 3632.
12. Goodfellow R. J., Goggin P. L., Venanzi L. M.: J. Chem. Soc. A 1967, 1897.
13. Schmelz M. J., Nakagawa I., Mizushima S., Quagliano J. V.: J. Amer. Chem. Soc. 81, 287 (1959).
14. Meek D. W., Nicpon P. E., Meek V. I.: J. Amer. Chem. Soc. 92, 5351 (1970).
15. Shobatake K., Nakamoto K.: J. Amer. Chem. Soc. 92, 3332 (1970).
16. Nakamoto K.: Infrared Spectra of Inorganic and Coordination Compounds, p. 315. Wiley, New York 1963.
17. Adams D. M., Chandler P. J., Churchill R. G.: J. Chem. Soc. A 1967, 1272.
18. Bailey R. A., Kozak S. L., Michelsen T. W., Mills W. N.: Coord. Chem. Rev. 6, 407 (1971).
19. Keller R. N., Johnson N. B., Westmoreland L. L.: J. Amer. Chem. Soc. 90, 2729 (1968).
20. Turco A., Pecile C.: Nature (London) 190, 66 (1961).
21. Carty A. J., Chieh P. C., Taylor N. J., Wong Y. S.: J. Chem. Soc., Dalton Trans. 1976, 572.
22. Jain S. C., Rivest R.: Inorg. Chim. Acta 4, 291 (1970).
23. Nakamoto K., Morimoto Y., Martell A. E.: J. Amer. Chern. Soc. 83, 4528 (1961).
24. Empsall H. D., Hyde E. M., Pawson D., Shaw B. L.: J. Chem. Soc., Dalton Trans. 1977, 1292.
[^3]
[^0]: * Part X in the series Compounds Structurally Related to Complexones; Part IX: J. Inorg.

 Nucl. Chem., in pres.
 ** Present address: Research Institute of Antibiotics and Biotransformations, Roztoky.

[^1]: ${ }^{a}$ Capillary; ${ }^{b}$ desolvation at $150^{\circ} \mathrm{C}$ without lattice change; weight loss calc.: $3 \cdot 67 \%$, found: $3 \cdot 75 \%$;
 ${ }^{c}$ desolvation at $170^{\circ} \mathrm{C}$ with lattice change; weight loss calc.: $9 \cdot 00 \%$, found: $10 \cdot 42 \%$.

[^2]: ${ }^{a}$ Terminal; ${ }^{b}$ bridging, trans to $\mathrm{P} ;{ }^{c}$ bridging, trans to $\mathrm{X} ;{ }^{d} v(\mathrm{C} \equiv \mathrm{N}) ;{ }^{c} v(\mathrm{C}-\mathrm{S}) ;{ }^{f} v(\mathrm{Pd}-\mathrm{S})$;
 ${ }^{g}$ overlapping; ${ }^{h} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ bands at $3350 \mathrm{~m}(\mathrm{OH}), 2980 \mathrm{w}\left(\mathrm{CH}_{3}\right), 1050 \mathrm{~m}(\mathrm{CO}) ;{ }^{i}$ below 200 $\mathrm{cm}^{-1} ;{ }^{j}$ overlapped by HA bands; ${ }^{k} v(\mathrm{Pd}-\mathrm{N})$.

[^3]: Translated by M. Štuliková.

